SmartMiner: A Depth First Algorithm Guided by Tail Information for Mining Maximal Frequent Itemsets

نویسندگان

  • Qinghua Zou
  • Wesley W. Chu
  • Baojing Lu
چکیده

Maximal frequent itemsets (MFI) are crucial to many tasks in data mining. Since the MaxMiner algorithm first introduced enumeration trees for mining MFI in 1998, there have been several methods proposed to use depth first search to improve performance. To further improve the performance of mining MFI, we proposed a technique to gather and pass tail (of a node) information to determine the next node to explore during the mining process. Our algorithm uses an augmented dynamic reordering heuristic with considering of the tail information. Compared with Mafia and GenMax, SmartMiner generates a much smaller search tree, requires a smaller number of support counting, and does not require superset checking. Using the datasets Mushroom and Connect, our experimental study reveals that SmartMiner generates the same MFI as Mafia and GenMax, but yields an order of magnitude improvement in speed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Discovering Maximal Frequent Item set using Association Array and Depth First Search Procedure with Effective Pruning Mechanisms

The first step of association rule mining is finding out all frequent itemsets. Generation of reliable association rules are based on all frequent itemsets found in the first step. Obtaining all frequent itemsets in a large database leads the overall performance in the association rule mining. In this paper, an efficient method for discovering the maximal frequent itemsets is proposed. This met...

متن کامل

Depth-First Non-Derivable Itemset Mining

Mining frequent itemsets is one of the main problems in data mining. Much effort went into developing efficient and scalable algorithms for this problem. When the support threshold is set too low, however, or the data is highly correlated, the number of frequent itemsets can become too large, independently of the algorithm used. Therefore, it is often more interesting to mine a reduced collecti...

متن کامل

MINING FUZZY TEMPORAL ITEMSETS WITHIN VARIOUS TIME INTERVALS IN QUANTITATIVE DATASETS

This research aims at proposing a new method for discovering frequent temporal itemsets in continuous subsets of a dataset with quantitative transactions. It is important to note that although these temporal itemsets may have relatively high textit{support} or occurrence within particular time intervals, they do not necessarily get similar textit{support} across the whole dataset, which makes i...

متن کامل

A comprehensive method for discovering the maximal frequent set

The association rule mining can be divided into two steps.The first step is to find out all frequent itemsets, whose occurrences are greater than or equal to the user-specified threshold.The second step is to generate reliable association rules based on all frequent itemsets found in the first step. Identifying all frequent itemsets in a large database dominates the overall performance in the a...

متن کامل

MAFIA: A Maximal Frequent Itemset Algorithm for Transactional Databases

We present a new algorithm for mining maximal frequent itemsets from a transactional database. Our algorithm is especially efficient when the itemsets in the database are very long. The search strategy of our algorithm integrates a depth-first traversal of the itemset lattice with effective pruning mechanisms. Our implementation of the search strategy combines a vertical bitmap representation o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002